Skip to content Skip to sidebar Skip to footer
proceedings of the ieee popular samek

Published in March 2021

 

Authors

W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller

Abstract

With the broader and highly successful usage of machine learning (ML) in industry and the sciences, there has been a growing demand for explainable artificial intelligence (XAI). Interpretability and explanation methods for gaining a better understanding of the problem-solving abilities and strategies of nonlinear ML, in particular, deep neural networks, are, therefore, receiving increased attention. In this work, we aim to: 1) provide a timely overview of this active emerging field, with a focus on “post hoc” explanations, and explain its theoretical foundations; 2) put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations; 3) outline best practice aspects, i.e., how to best include interpretation methods into the standard usage of ML; and 4) demonstrate successful usage of XAI in a representative selection of application scenarios. Finally, we discuss challenges and possible future directions of this exciting foundational field of ML.

View this article on IEEE Xplore

Share: